
Level 2: Data
ParallelI Interface & I/O

Nim

Level 3: High
Performance Libraries

Level 1: Data Control
Thread, Vectors, Mess

Level 4: Scripts,
Tensors, Application Code CPS/MILC/Chroma

Shared Dirac Solvers &
Symplectic Integrators etc QUDA QPhiX

grid & QDP-JIT

Pthreads, Vector, MPIData Mapping and
Partitioning

QIO

Tensor
Generator

Evolving Lattice Field Theory Software Landscape

Thomas Jefferson National Accelerator Facility

Software Development at JLab

Balint Joo, Jefferson Lab
USQCD AHM, BNL, April 28/29/30

Thomas Jefferson National Accelerator Facility

Developing For KNL
• QPhiX Optimization for AVX512

- B. Joo (JLab), D. Kalamkar (Intel), T. Kurth (NERSC), A. Walden (ODU)

- Bread & butter: Dslash, Clover, CG & BiCGStab

• Contraction code for Distillation (J. Chen, JLab)

• QDP-JIT/LLVM for x86 (F. Winter, JLab)

• Strong Collaboration with NERSC NESAP Program
- Our NESAP contact Thorsten Kurth, already made many valuable contributions to QPhiX:

• Added out of order receives to Dslash

• Improved BLAS like kernels in the solvers

- Next Target: Full x86 QDP-JIT/LLVM+Chroma+QPhiX stack on Cori Phase I.

• Collaboration with Intel
- JLab had (has) access to a Beta KNL

- JLab is working with Intel and other community developers to better understand and
optimize Chroma for KNL

• Working on/towards Multigrid Implementation
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing

Image Credits: intel.com
Images from Intel’s Knight’s Landing

public disclosures page

Thomas Jefferson National Accelerator Facility

GPU Developments
• Code to help NPLQCD Contractions (F. Winter)
• Code for Distillation Contractions (J. Chen)
• MultiGrid for Wilson Clover props

- CodeFest at JLab in January (K. Clark, J. Chen, R. Edwards,
A. Gambhir, B. Joo, A. Strelchenko, W. Watson, F. Winter)

- AMG Developed in QUDA (K. Clark)

- Integrated into Chroma for props (B. Joo, A. Gambhir)

- 6x-10x speedup over QUDA BiCGStab, ~10x over
BlueWaters CPU (AMD Bulldozer) code using QOPMG

- Paper Submitted to SC'16

- AMG in HMC on drawing board

• possibly at OLCF GPU Hackathon in October?

• Integrate other QUDA Improvements to Chroma
- Multi-source (aka Multi-Right Hand Side) solvers

20 25 30
XK Nodes (GPUs)

0

5

10

15

20

25

30

35

W
al

lc
lo

ck
 T

im
e

(s
ec

)

24/24
24/32
32/32
BiCGStab

V=403x256, r = 5x10-6

24 32 40 48
XK Nodes (GPUs)

0

5

10

15

20

25

30

35
V=483x96, r=10-7

0 128 256 384 512
XK Nodes (GPUs)

0

5

10

15

20

25

30

35
V=643x128, r=10-7

QUDA Clover Multigrid running from Chroma
on Titan on configurations of Interest (K20x GPUs)

Tesla K80 GPU,
Image: nvidia.com

NVIDIA Pascal GPU,
Image: anandtech.com

mπ~192 MeV
isotropic clover

mπ~232 MeV
anisotropic

clover

mπ~192 MeV
isotropic clover

PRELIM
INARY

2

INTRODUCING TESLA P100
New GPU Architecture to Enable the World’s Fastest Compute Node

Pascal Architecture NVLink HBM2 Stacked Memory Page Migration Engine
PCIe

Switch
PCIe

Switch

CPU CPU

Highest Compute Performance GPU Interconnect for Maximum
Scalability

Unifying Compute & Memory in
Single Package

Simple Parallel Programming with
512 TB of Virtual Memory

Unified Memory

CPU

Tesla
P100

April 4-7, 2016 | Silicon Valley

Lars Nyland and Mark Harris, April 5, 2016

INSIDE PASCAL

8 16 32 64 128
Temporal Extent

0

500

1000

1500

2000

2500

3000

3500

G
FL

O
PS

Double 18
Single 18
Single 12
Single 8
Half 12
Half 8
Half 8 GF

Wilson-clover Dslash performance on Pascal P100

Figure form Kate Clark/NVIDIA

Volume = 24^3 x Lt

46

COMING SOON

•>10x speedup from MG

•Lower bound since much more optimization to do

•6x node-to-node speedup

•DGX-1 (8x GP100) vs Pi0g (4x K40)

•3x speedup from multi-src solvers

•Increased temporal locality from links and increased parallelism for MG

•Expect >100x speedup for analysis workloads versus current GPU workflow

Alexei, Kate, Evan and I are working on extending this to
Multigrid Staggered — we’ll see?

* More optimization is clearly possible: Need similar project on KNL

MG GPU NOW &

Pascal P100

DGX-1 8 P100’s

DWF wth or without Gparity(CPS)

Grid(https://github.com/paboyle/Grid)(P. Boyle, et. al.):
Data parallel C++ object library. Divides local volumes to subvolumes. Gather
corresponding numbers from each subvolume to fill vectorized types. Aggressive
use of new C++11 features. All in C++ except machine specific intrinsics.
AVX512 already present.

Grid SP Mobius CG performance (2016/1)
BlueWaters Edison CoriP1 Babbage

Cores/node 16 24 32 60
Peak(SP) GF/s 627 921 2335 1000

Bidi Network (GB/s) 9.5 11 11.5
Single node (Gflops/s) 117 265 630 290

84 multinode 29 82 88
164 multinode 43 130 190

A lot of updates/progress on KNL and beyond, under NDA....
New vectorization scheme (along Ls) being added to 5d precon. DWF.
Better network will be very worthwhile!
Mobius & DSDR CG, Fermion force term and Lanczos with and without Gparity
integrated and tested with CPS.
OpenACC for GPU being explored (M. Lin, C. Kelly)
Gparity contraction code written with Grid-defined data types + FFT & Lapack.
(C. Kelly)

https://github.com/paboyle/Grid

Exact one-flavor(Chiu et. al.) : Non-Gparity implementation progressing(D.
Murphy). Focusing on getting ready for Gparity production on BG/Q in the
short term. Will allow more optimization with Hasenbusch, mixed CG..

Exact deflation: Lanczos can generate � 2000 5D eigenvectors with similar
number of dslashes as 20 ⇠ 30 undeflated CG on 483 or 643 ensemble. 2000 5d
164 ⇥ 12 ⇠ 70GB. Careful profiling showed popular methods for eigenpair
calculation (QR, etc) can take a significant portion of total time. Changed it to
parallelizable methods (Bisection or DQDS(Lapack)).

QUDA DWF/Mobius: Latest Double-half DWF CG performance (from K. Clark,

Quad K80, V = 244 ⇥ 16)
1 GPU 2 4 8

GF/s 561 1096 2104 3932
Recent optimization with peer-to-peer comms improves scaling significantly on
systems with multiple GPUs per node. Further development for zMobius
planned. So far without Gparity.

Vectorized wilson dslash from R-stream(Reservoir, M. Lin, E. Papenhausen)

Network BW is the limiting factor for evolution, deflation, etc. Finding better
ways to distribute work (e.g. Lanczos on CPU + deflated solvers on GPU?)
without disk I/O would be beneficial.

Algorithmic development (Multigrid, delayed deflation, in flight data
rearrangement...) are crucial for improving strong scaling further.

Nim & QEX

drhgfdjhngngfmhgmghmghjmghfmf

James C. Osborn & Xiao-Yong Jin

ALCF

USQCD All Hands Meeting

BNL

April 29-30, 2016

2

Exploring high-level languages for LFT: Nim (nim-lang.org)

● Recently started using Nim to develop new high-level LFT framework (QEX)

● Nim: modern language started in 2008, “efficient, expressive, and elegant”

● Feel of high level scripting language (Python): extensive type inference,
but is statically typed systems language (full access to low-level objects & code)

● Generates C or C++ code, then compile with any compiler

– Easy integration with C/C++: intrinsics (simd), pragmas (OpenMP)

– GPU support (OpenCL) on roadmap, but probably long ways off

– LLVM-IR backend recently contributed (still in development)

● Integrated build system (no Makefile necessary): copy main program, modify, compile

● Extensive meta-programming support (nearly full language
available at compile time)

– Transform any Nim code to new Nim code using Nim code

● Openly available on github (MIT license)

● Started by Andreas Rumpf (still main developer)

● 12 contributors with 50+ commits, 89 total in past 2 years

● Soon to be one more

3

4

QEX (Quantum EXpressions) development plans (https://github.com/jcosborn/qex)

● General tensor support in development:
 tensorOps:
 v2 = 0
 v2 += v1 + 0.1
 v3 += m1 * v2
(above code block transforms to the pseudocode)
 for j in 0..2:
 v2[j] = 0
 v2[j] += v1[j] + 0.1
 for k in 0..2:
 v3[k] += m1[k,j] * v2[j]

● Can also use Einstein notation (autosummation):
 v1[a] = p[mu,mu,a,b] * v2[b]

● Status & plans:
- framework has full threading and vectorization support
- have staggered solver & simple analysis running
- working on finishing basic high-level interface
- start adding more physics code (HMC, other actions)
- longer term plans: GPU, refinement/additions to
 high-level interface, more optimization

Physics problems

actions beyond SU(3) gauge + fundamental fermions

new algorithms (with many parameters to tune)

Dirac inverters will not dominate computational budget

…

Hardware (driven by heat dissipation)

more available flops, vector FPUs

less memory bandwidth, higher latency (per Flops)

slower network

complex memories

Physics problems

actions beyond SU(3) gauge + fundamental fermions

new algorithms (with many parameters to tune)

Dirac inverters will not dominate computational budget

…

Hardware

It is not known what the next machine will be.
We need to be ready to run on it.

High level scripting

hardware independent

segregated from implementation details

long term stability

High level scripting

hardware independent

segregated from implementation details

long term stability

Target machines

networked fat nodes

large local memory

many (but not a power of 2) cores per node

vector FPUs (of unknown vector length)

tightly coupled accelerators with separate memory

deficient compilers (e.g., OpenMP is evil)

use 3rd party components (MPI, HDF5, …)

borrow ideas from other fields

image processing

event-driven computations

coherent cache protocols

